metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.3D14, C14.41(C4×D4), C23.D7⋊8C4, (C2×C28).247D4, C23.15(C4×D7), C22.95(D4×D7), C2.1(C28⋊2D4), (C22×C4).24D14, C14.82(C4⋊D4), (C2×Dic7).105D4, C14.C42⋊38C2, C14.30(C4.4D4), C22.50(C4○D28), (C23×C14).27C22, C7⋊4(C24.C22), C23.277(C22×D7), C14.11(C42⋊2C2), C14.26(C42⋊C2), C2.24(Dic7⋊4D4), C22.43(D4⋊2D7), (C22×C14).319C23, (C22×C28).341C22, C2.5(Dic7.D4), C2.5(C23.D14), C2.2(C23.18D14), C14.71(C22.D4), (C22×Dic7).35C22, C2.13(C23.11D14), C2.7(C4×C7⋊D4), (C2×C4×Dic7)⋊21C2, (C2×Dic7⋊C4)⋊7C2, (C2×C22⋊C4).6D7, C22.123(C2×C4×D7), (C2×C14).314(C2×D4), C22.47(C2×C7⋊D4), (C2×C23.D7).6C2, (C2×C4).167(C7⋊D4), (C14×C22⋊C4).23C2, (C22×C14).47(C2×C4), (C2×Dic7).58(C2×C4), (C2×C14).140(C4○D4), (C2×C14).105(C22×C4), SmallGroup(448,478)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.3D14
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=b, f2=db=bd, ab=ba, ac=ca, eae-1=ad=da, faf-1=acd, bc=cb, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e13 >
Subgroups: 724 in 190 conjugacy classes, 69 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, C23, C23, C23, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic7, C28, C2×C14, C2×C14, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×C14, C22×C14, C22×C14, C24.C22, C4×Dic7, Dic7⋊C4, C23.D7, C23.D7, C7×C22⋊C4, C22×Dic7, C22×C28, C23×C14, C14.C42, C2×C4×Dic7, C2×Dic7⋊C4, C2×C23.D7, C14×C22⋊C4, C24.3D14
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C4×D7, C7⋊D4, C22×D7, C24.C22, C2×C4×D7, C4○D28, D4×D7, D4⋊2D7, C2×C7⋊D4, C23.11D14, C23.D14, Dic7⋊4D4, Dic7.D4, C4×C7⋊D4, C23.18D14, C28⋊2D4, C24.3D14
(1 15)(2 221)(3 17)(4 223)(5 19)(6 197)(7 21)(8 199)(9 23)(10 201)(11 25)(12 203)(13 27)(14 205)(16 207)(18 209)(20 211)(22 213)(24 215)(26 217)(28 219)(29 43)(30 92)(31 45)(32 94)(33 47)(34 96)(35 49)(36 98)(37 51)(38 100)(39 53)(40 102)(41 55)(42 104)(44 106)(46 108)(48 110)(50 112)(52 86)(54 88)(56 90)(57 128)(58 170)(59 130)(60 172)(61 132)(62 174)(63 134)(64 176)(65 136)(66 178)(67 138)(68 180)(69 140)(70 182)(71 114)(72 184)(73 116)(74 186)(75 118)(76 188)(77 120)(78 190)(79 122)(80 192)(81 124)(82 194)(83 126)(84 196)(85 99)(87 101)(89 103)(91 105)(93 107)(95 109)(97 111)(113 153)(115 155)(117 157)(119 159)(121 161)(123 163)(125 165)(127 167)(129 141)(131 143)(133 145)(135 147)(137 149)(139 151)(142 171)(144 173)(146 175)(148 177)(150 179)(152 181)(154 183)(156 185)(158 187)(160 189)(162 191)(164 193)(166 195)(168 169)(198 212)(200 214)(202 216)(204 218)(206 220)(208 222)(210 224)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 97)(8 98)(9 99)(10 100)(11 101)(12 102)(13 103)(14 104)(15 105)(16 106)(17 107)(18 108)(19 109)(20 110)(21 111)(22 112)(23 85)(24 86)(25 87)(26 88)(27 89)(28 90)(29 220)(30 221)(31 222)(32 223)(33 224)(34 197)(35 198)(36 199)(37 200)(38 201)(39 202)(40 203)(41 204)(42 205)(43 206)(44 207)(45 208)(46 209)(47 210)(48 211)(49 212)(50 213)(51 214)(52 215)(53 216)(54 217)(55 218)(56 219)(57 114)(58 115)(59 116)(60 117)(61 118)(62 119)(63 120)(64 121)(65 122)(66 123)(67 124)(68 125)(69 126)(70 127)(71 128)(72 129)(73 130)(74 131)(75 132)(76 133)(77 134)(78 135)(79 136)(80 137)(81 138)(82 139)(83 140)(84 113)(141 184)(142 185)(143 186)(144 187)(145 188)(146 189)(147 190)(148 191)(149 192)(150 193)(151 194)(152 195)(153 196)(154 169)(155 170)(156 171)(157 172)(158 173)(159 174)(160 175)(161 176)(162 177)(163 178)(164 179)(165 180)(166 181)(167 182)(168 183)
(1 206)(2 207)(3 208)(4 209)(5 210)(6 211)(7 212)(8 213)(9 214)(10 215)(11 216)(12 217)(13 218)(14 219)(15 220)(16 221)(17 222)(18 223)(19 224)(20 197)(21 198)(22 199)(23 200)(24 201)(25 202)(26 203)(27 204)(28 205)(29 105)(30 106)(31 107)(32 108)(33 109)(34 110)(35 111)(36 112)(37 85)(38 86)(39 87)(40 88)(41 89)(42 90)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)(49 97)(50 98)(51 99)(52 100)(53 101)(54 102)(55 103)(56 104)(57 168)(58 141)(59 142)(60 143)(61 144)(62 145)(63 146)(64 147)(65 148)(66 149)(67 150)(68 151)(69 152)(70 153)(71 154)(72 155)(73 156)(74 157)(75 158)(76 159)(77 160)(78 161)(79 162)(80 163)(81 164)(82 165)(83 166)(84 167)(113 182)(114 183)(115 184)(116 185)(117 186)(118 187)(119 188)(120 189)(121 190)(122 191)(123 192)(124 193)(125 194)(126 195)(127 196)(128 169)(129 170)(130 171)(131 172)(132 173)(133 174)(134 175)(135 176)(136 177)(137 178)(138 179)(139 180)(140 181)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 115 220 170)(2 128 221 183)(3 113 222 196)(4 126 223 181)(5 139 224 194)(6 124 197 179)(7 137 198 192)(8 122 199 177)(9 135 200 190)(10 120 201 175)(11 133 202 188)(12 118 203 173)(13 131 204 186)(14 116 205 171)(15 129 206 184)(16 114 207 169)(17 127 208 182)(18 140 209 195)(19 125 210 180)(20 138 211 193)(21 123 212 178)(22 136 213 191)(23 121 214 176)(24 134 215 189)(25 119 216 174)(26 132 217 187)(27 117 218 172)(28 130 219 185)(29 155 91 58)(30 168 92 71)(31 153 93 84)(32 166 94 69)(33 151 95 82)(34 164 96 67)(35 149 97 80)(36 162 98 65)(37 147 99 78)(38 160 100 63)(39 145 101 76)(40 158 102 61)(41 143 103 74)(42 156 104 59)(43 141 105 72)(44 154 106 57)(45 167 107 70)(46 152 108 83)(47 165 109 68)(48 150 110 81)(49 163 111 66)(50 148 112 79)(51 161 85 64)(52 146 86 77)(53 159 87 62)(54 144 88 75)(55 157 89 60)(56 142 90 73)
G:=sub<Sym(224)| (1,15)(2,221)(3,17)(4,223)(5,19)(6,197)(7,21)(8,199)(9,23)(10,201)(11,25)(12,203)(13,27)(14,205)(16,207)(18,209)(20,211)(22,213)(24,215)(26,217)(28,219)(29,43)(30,92)(31,45)(32,94)(33,47)(34,96)(35,49)(36,98)(37,51)(38,100)(39,53)(40,102)(41,55)(42,104)(44,106)(46,108)(48,110)(50,112)(52,86)(54,88)(56,90)(57,128)(58,170)(59,130)(60,172)(61,132)(62,174)(63,134)(64,176)(65,136)(66,178)(67,138)(68,180)(69,140)(70,182)(71,114)(72,184)(73,116)(74,186)(75,118)(76,188)(77,120)(78,190)(79,122)(80,192)(81,124)(82,194)(83,126)(84,196)(85,99)(87,101)(89,103)(91,105)(93,107)(95,109)(97,111)(113,153)(115,155)(117,157)(119,159)(121,161)(123,163)(125,165)(127,167)(129,141)(131,143)(133,145)(135,147)(137,149)(139,151)(142,171)(144,173)(146,175)(148,177)(150,179)(152,181)(154,183)(156,185)(158,187)(160,189)(162,191)(164,193)(166,195)(168,169)(198,212)(200,214)(202,216)(204,218)(206,220)(208,222)(210,224), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,85)(24,86)(25,87)(26,88)(27,89)(28,90)(29,220)(30,221)(31,222)(32,223)(33,224)(34,197)(35,198)(36,199)(37,200)(38,201)(39,202)(40,203)(41,204)(42,205)(43,206)(44,207)(45,208)(46,209)(47,210)(48,211)(49,212)(50,213)(51,214)(52,215)(53,216)(54,217)(55,218)(56,219)(57,114)(58,115)(59,116)(60,117)(61,118)(62,119)(63,120)(64,121)(65,122)(66,123)(67,124)(68,125)(69,126)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133)(77,134)(78,135)(79,136)(80,137)(81,138)(82,139)(83,140)(84,113)(141,184)(142,185)(143,186)(144,187)(145,188)(146,189)(147,190)(148,191)(149,192)(150,193)(151,194)(152,195)(153,196)(154,169)(155,170)(156,171)(157,172)(158,173)(159,174)(160,175)(161,176)(162,177)(163,178)(164,179)(165,180)(166,181)(167,182)(168,183), (1,206)(2,207)(3,208)(4,209)(5,210)(6,211)(7,212)(8,213)(9,214)(10,215)(11,216)(12,217)(13,218)(14,219)(15,220)(16,221)(17,222)(18,223)(19,224)(20,197)(21,198)(22,199)(23,200)(24,201)(25,202)(26,203)(27,204)(28,205)(29,105)(30,106)(31,107)(32,108)(33,109)(34,110)(35,111)(36,112)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,97)(50,98)(51,99)(52,100)(53,101)(54,102)(55,103)(56,104)(57,168)(58,141)(59,142)(60,143)(61,144)(62,145)(63,146)(64,147)(65,148)(66,149)(67,150)(68,151)(69,152)(70,153)(71,154)(72,155)(73,156)(74,157)(75,158)(76,159)(77,160)(78,161)(79,162)(80,163)(81,164)(82,165)(83,166)(84,167)(113,182)(114,183)(115,184)(116,185)(117,186)(118,187)(119,188)(120,189)(121,190)(122,191)(123,192)(124,193)(125,194)(126,195)(127,196)(128,169)(129,170)(130,171)(131,172)(132,173)(133,174)(134,175)(135,176)(136,177)(137,178)(138,179)(139,180)(140,181), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,115,220,170)(2,128,221,183)(3,113,222,196)(4,126,223,181)(5,139,224,194)(6,124,197,179)(7,137,198,192)(8,122,199,177)(9,135,200,190)(10,120,201,175)(11,133,202,188)(12,118,203,173)(13,131,204,186)(14,116,205,171)(15,129,206,184)(16,114,207,169)(17,127,208,182)(18,140,209,195)(19,125,210,180)(20,138,211,193)(21,123,212,178)(22,136,213,191)(23,121,214,176)(24,134,215,189)(25,119,216,174)(26,132,217,187)(27,117,218,172)(28,130,219,185)(29,155,91,58)(30,168,92,71)(31,153,93,84)(32,166,94,69)(33,151,95,82)(34,164,96,67)(35,149,97,80)(36,162,98,65)(37,147,99,78)(38,160,100,63)(39,145,101,76)(40,158,102,61)(41,143,103,74)(42,156,104,59)(43,141,105,72)(44,154,106,57)(45,167,107,70)(46,152,108,83)(47,165,109,68)(48,150,110,81)(49,163,111,66)(50,148,112,79)(51,161,85,64)(52,146,86,77)(53,159,87,62)(54,144,88,75)(55,157,89,60)(56,142,90,73)>;
G:=Group( (1,15)(2,221)(3,17)(4,223)(5,19)(6,197)(7,21)(8,199)(9,23)(10,201)(11,25)(12,203)(13,27)(14,205)(16,207)(18,209)(20,211)(22,213)(24,215)(26,217)(28,219)(29,43)(30,92)(31,45)(32,94)(33,47)(34,96)(35,49)(36,98)(37,51)(38,100)(39,53)(40,102)(41,55)(42,104)(44,106)(46,108)(48,110)(50,112)(52,86)(54,88)(56,90)(57,128)(58,170)(59,130)(60,172)(61,132)(62,174)(63,134)(64,176)(65,136)(66,178)(67,138)(68,180)(69,140)(70,182)(71,114)(72,184)(73,116)(74,186)(75,118)(76,188)(77,120)(78,190)(79,122)(80,192)(81,124)(82,194)(83,126)(84,196)(85,99)(87,101)(89,103)(91,105)(93,107)(95,109)(97,111)(113,153)(115,155)(117,157)(119,159)(121,161)(123,163)(125,165)(127,167)(129,141)(131,143)(133,145)(135,147)(137,149)(139,151)(142,171)(144,173)(146,175)(148,177)(150,179)(152,181)(154,183)(156,185)(158,187)(160,189)(162,191)(164,193)(166,195)(168,169)(198,212)(200,214)(202,216)(204,218)(206,220)(208,222)(210,224), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,85)(24,86)(25,87)(26,88)(27,89)(28,90)(29,220)(30,221)(31,222)(32,223)(33,224)(34,197)(35,198)(36,199)(37,200)(38,201)(39,202)(40,203)(41,204)(42,205)(43,206)(44,207)(45,208)(46,209)(47,210)(48,211)(49,212)(50,213)(51,214)(52,215)(53,216)(54,217)(55,218)(56,219)(57,114)(58,115)(59,116)(60,117)(61,118)(62,119)(63,120)(64,121)(65,122)(66,123)(67,124)(68,125)(69,126)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133)(77,134)(78,135)(79,136)(80,137)(81,138)(82,139)(83,140)(84,113)(141,184)(142,185)(143,186)(144,187)(145,188)(146,189)(147,190)(148,191)(149,192)(150,193)(151,194)(152,195)(153,196)(154,169)(155,170)(156,171)(157,172)(158,173)(159,174)(160,175)(161,176)(162,177)(163,178)(164,179)(165,180)(166,181)(167,182)(168,183), (1,206)(2,207)(3,208)(4,209)(5,210)(6,211)(7,212)(8,213)(9,214)(10,215)(11,216)(12,217)(13,218)(14,219)(15,220)(16,221)(17,222)(18,223)(19,224)(20,197)(21,198)(22,199)(23,200)(24,201)(25,202)(26,203)(27,204)(28,205)(29,105)(30,106)(31,107)(32,108)(33,109)(34,110)(35,111)(36,112)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,97)(50,98)(51,99)(52,100)(53,101)(54,102)(55,103)(56,104)(57,168)(58,141)(59,142)(60,143)(61,144)(62,145)(63,146)(64,147)(65,148)(66,149)(67,150)(68,151)(69,152)(70,153)(71,154)(72,155)(73,156)(74,157)(75,158)(76,159)(77,160)(78,161)(79,162)(80,163)(81,164)(82,165)(83,166)(84,167)(113,182)(114,183)(115,184)(116,185)(117,186)(118,187)(119,188)(120,189)(121,190)(122,191)(123,192)(124,193)(125,194)(126,195)(127,196)(128,169)(129,170)(130,171)(131,172)(132,173)(133,174)(134,175)(135,176)(136,177)(137,178)(138,179)(139,180)(140,181), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,115,220,170)(2,128,221,183)(3,113,222,196)(4,126,223,181)(5,139,224,194)(6,124,197,179)(7,137,198,192)(8,122,199,177)(9,135,200,190)(10,120,201,175)(11,133,202,188)(12,118,203,173)(13,131,204,186)(14,116,205,171)(15,129,206,184)(16,114,207,169)(17,127,208,182)(18,140,209,195)(19,125,210,180)(20,138,211,193)(21,123,212,178)(22,136,213,191)(23,121,214,176)(24,134,215,189)(25,119,216,174)(26,132,217,187)(27,117,218,172)(28,130,219,185)(29,155,91,58)(30,168,92,71)(31,153,93,84)(32,166,94,69)(33,151,95,82)(34,164,96,67)(35,149,97,80)(36,162,98,65)(37,147,99,78)(38,160,100,63)(39,145,101,76)(40,158,102,61)(41,143,103,74)(42,156,104,59)(43,141,105,72)(44,154,106,57)(45,167,107,70)(46,152,108,83)(47,165,109,68)(48,150,110,81)(49,163,111,66)(50,148,112,79)(51,161,85,64)(52,146,86,77)(53,159,87,62)(54,144,88,75)(55,157,89,60)(56,142,90,73) );
G=PermutationGroup([[(1,15),(2,221),(3,17),(4,223),(5,19),(6,197),(7,21),(8,199),(9,23),(10,201),(11,25),(12,203),(13,27),(14,205),(16,207),(18,209),(20,211),(22,213),(24,215),(26,217),(28,219),(29,43),(30,92),(31,45),(32,94),(33,47),(34,96),(35,49),(36,98),(37,51),(38,100),(39,53),(40,102),(41,55),(42,104),(44,106),(46,108),(48,110),(50,112),(52,86),(54,88),(56,90),(57,128),(58,170),(59,130),(60,172),(61,132),(62,174),(63,134),(64,176),(65,136),(66,178),(67,138),(68,180),(69,140),(70,182),(71,114),(72,184),(73,116),(74,186),(75,118),(76,188),(77,120),(78,190),(79,122),(80,192),(81,124),(82,194),(83,126),(84,196),(85,99),(87,101),(89,103),(91,105),(93,107),(95,109),(97,111),(113,153),(115,155),(117,157),(119,159),(121,161),(123,163),(125,165),(127,167),(129,141),(131,143),(133,145),(135,147),(137,149),(139,151),(142,171),(144,173),(146,175),(148,177),(150,179),(152,181),(154,183),(156,185),(158,187),(160,189),(162,191),(164,193),(166,195),(168,169),(198,212),(200,214),(202,216),(204,218),(206,220),(208,222),(210,224)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,97),(8,98),(9,99),(10,100),(11,101),(12,102),(13,103),(14,104),(15,105),(16,106),(17,107),(18,108),(19,109),(20,110),(21,111),(22,112),(23,85),(24,86),(25,87),(26,88),(27,89),(28,90),(29,220),(30,221),(31,222),(32,223),(33,224),(34,197),(35,198),(36,199),(37,200),(38,201),(39,202),(40,203),(41,204),(42,205),(43,206),(44,207),(45,208),(46,209),(47,210),(48,211),(49,212),(50,213),(51,214),(52,215),(53,216),(54,217),(55,218),(56,219),(57,114),(58,115),(59,116),(60,117),(61,118),(62,119),(63,120),(64,121),(65,122),(66,123),(67,124),(68,125),(69,126),(70,127),(71,128),(72,129),(73,130),(74,131),(75,132),(76,133),(77,134),(78,135),(79,136),(80,137),(81,138),(82,139),(83,140),(84,113),(141,184),(142,185),(143,186),(144,187),(145,188),(146,189),(147,190),(148,191),(149,192),(150,193),(151,194),(152,195),(153,196),(154,169),(155,170),(156,171),(157,172),(158,173),(159,174),(160,175),(161,176),(162,177),(163,178),(164,179),(165,180),(166,181),(167,182),(168,183)], [(1,206),(2,207),(3,208),(4,209),(5,210),(6,211),(7,212),(8,213),(9,214),(10,215),(11,216),(12,217),(13,218),(14,219),(15,220),(16,221),(17,222),(18,223),(19,224),(20,197),(21,198),(22,199),(23,200),(24,201),(25,202),(26,203),(27,204),(28,205),(29,105),(30,106),(31,107),(32,108),(33,109),(34,110),(35,111),(36,112),(37,85),(38,86),(39,87),(40,88),(41,89),(42,90),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96),(49,97),(50,98),(51,99),(52,100),(53,101),(54,102),(55,103),(56,104),(57,168),(58,141),(59,142),(60,143),(61,144),(62,145),(63,146),(64,147),(65,148),(66,149),(67,150),(68,151),(69,152),(70,153),(71,154),(72,155),(73,156),(74,157),(75,158),(76,159),(77,160),(78,161),(79,162),(80,163),(81,164),(82,165),(83,166),(84,167),(113,182),(114,183),(115,184),(116,185),(117,186),(118,187),(119,188),(120,189),(121,190),(122,191),(123,192),(124,193),(125,194),(126,195),(127,196),(128,169),(129,170),(130,171),(131,172),(132,173),(133,174),(134,175),(135,176),(136,177),(137,178),(138,179),(139,180),(140,181)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,115,220,170),(2,128,221,183),(3,113,222,196),(4,126,223,181),(5,139,224,194),(6,124,197,179),(7,137,198,192),(8,122,199,177),(9,135,200,190),(10,120,201,175),(11,133,202,188),(12,118,203,173),(13,131,204,186),(14,116,205,171),(15,129,206,184),(16,114,207,169),(17,127,208,182),(18,140,209,195),(19,125,210,180),(20,138,211,193),(21,123,212,178),(22,136,213,191),(23,121,214,176),(24,134,215,189),(25,119,216,174),(26,132,217,187),(27,117,218,172),(28,130,219,185),(29,155,91,58),(30,168,92,71),(31,153,93,84),(32,166,94,69),(33,151,95,82),(34,164,96,67),(35,149,97,80),(36,162,98,65),(37,147,99,78),(38,160,100,63),(39,145,101,76),(40,158,102,61),(41,143,103,74),(42,156,104,59),(43,141,105,72),(44,154,106,57),(45,167,107,70),(46,152,108,83),(47,165,109,68),(48,150,110,81),(49,163,111,66),(50,148,112,79),(51,161,85,64),(52,146,86,77),(53,159,87,62),(54,144,88,75),(55,157,89,60),(56,142,90,73)]])
88 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 4O | 4P | 4Q | 4R | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AG | 28A | ··· | 28X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 14 | ··· | 14 | 28 | 28 | 28 | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
88 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | C4×D7 | C4○D28 | D4×D7 | D4⋊2D7 |
kernel | C24.3D14 | C14.C42 | C2×C4×Dic7 | C2×Dic7⋊C4 | C2×C23.D7 | C14×C22⋊C4 | C23.D7 | C2×Dic7 | C2×C28 | C2×C22⋊C4 | C2×C14 | C22×C4 | C24 | C2×C4 | C23 | C22 | C22 | C22 |
# reps | 1 | 2 | 1 | 1 | 2 | 1 | 8 | 2 | 2 | 3 | 8 | 6 | 3 | 12 | 12 | 12 | 3 | 9 |
Matrix representation of C24.3D14 ►in GL5(𝔽29)
1 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 25 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 9 | 1 |
28 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
12 | 0 | 0 | 0 | 0 |
0 | 19 | 0 | 0 | 0 |
0 | 3 | 3 | 0 | 0 |
0 | 0 | 0 | 4 | 17 |
0 | 0 | 0 | 28 | 25 |
17 | 0 | 0 | 0 | 0 |
0 | 26 | 16 | 0 | 0 |
0 | 3 | 3 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(29))| [1,0,0,0,0,0,28,25,0,0,0,0,1,0,0,0,0,0,28,9,0,0,0,0,1],[28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28],[1,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,28],[12,0,0,0,0,0,19,3,0,0,0,0,3,0,0,0,0,0,4,28,0,0,0,17,25],[17,0,0,0,0,0,26,3,0,0,0,16,3,0,0,0,0,0,1,0,0,0,0,0,1] >;
C24.3D14 in GAP, Magma, Sage, TeX
C_2^4._3D_{14}
% in TeX
G:=Group("C2^4.3D14");
// GroupNames label
G:=SmallGroup(448,478);
// by ID
G=gap.SmallGroup(448,478);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,253,387,58,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=b,f^2=d*b=b*d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^13>;
// generators/relations